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Stability of inhomogeneous steady distributions of the electron temperature 
(electron concentratim ) and the electrodynamic parameters (current density 
and electric field ) in a channel, relative to the one-dimensional perturbations, 
is investigated. A criterion of stability is obtained for a layered wave. 

The authors of Cl] have shown that distributionsof electron concentrations may 
exist in a channel with a nonequilibrium magnetized plasma, representing homogeneous 
regions separated by stationary surfaces of discontinuity (layered waves), Stationary 

solitons (solitary waves ) may appear for a specified composition of the plasma in the 
channel s at various values of the potential difference at the electrodes. Problems exist 
in which the solution with travelling layered waves or solitons may be utilized. Analo- 

gous distributions of the parameters of the medium arise in the problems concerned with 
semiconductors [2,3 ] and gas discharge in a nonequilibrium plasma [4-6 I The present 
paper deals with the stability of such inhomogeneous steady states under one-dimensional 

perturbations and shows, that the conclusions of [7 ] need to be refined. 
Let is investigate the spectrum of the linear problem of stability of an inhomo- 

geneous state corresponding to a standing layered wave Cl] of thickness 21, symmet- 
rically distributed with respect to the channel center (S, (z) is the dimensionless elec- 
tron concentration, and the plane of the wave is parallel to the electrode surfaces ) 

so (XI = 
{ 

s, = const, --1 < 5 < - I,, I, < x < 1 

sa = const, 1, < x < I,, s1+ As.3 

(the discontinuous solution will be regarded as the limit of the continuous solution in 
the channel ) , 

The dimensionless electron concentration satisfies the equation 

as 
& A V,) o 

dS, 
dz + VV,) dz + F (S,) =9 

the boundary condition 

so (---1) = s, (1) 

and the condition of symmetry with respect to the channel center, The coordinate 
origin coincides with the channel center. The electrode surfaces extended to infinity 

are parallel to the ~92 -plane. The y -axis is directed along the channel, and the 
magnetic field along the z -axis. The distance 21 between the electrodes serves as the 

characteristic dimension. The remaining notation follows that of [l ] . Only dimension- 

less variables will be used. The analysis of the spectrum yields conclusions concerning 
the stability of the stationary soliton and of the states with moving layered waves or sol- 
itons. The results obtained can also be used in the study of the influence of the external 
electrical network of the installation on the stability of the inhomogeneous states. 

1157 



1158 
0. A. Sinkevich 

The system of equations for one-dimensional perturbations S+ (I, t) can be 
written in the form 

x+lat = LSf (1) 
El, G E, == con&, jZ G j,, _ collst, 17 = F (E,, jo, S,] (2.)) 

tl” 
I, G Al (S,, (5)) -p t I? (So (2)) &,.I- Fb’ (S” (5)) ) 

dS, dW 
c’s’ VII (4) ds -t- &‘Vo (4) -y$- 

The following relations serve as the boundary conditions for the perturbations S+ : 

s+ (--_I, t) = s+ (1, t) _- 0 (2) 

Performing the transformation 
N 

we reduce (1) and the boundary conditions (2 ) to the form ( H is a s&conjugate 
operator and n (5) denotes the delta function ) 

ax+lat = fix+, x+ (-1, t) = Xf (1, 1) = 0 
(3) 

If E:l. (5) $ - j (Z) i- I”,’ 16 (X I- II) i- 6 t5 - [I)1 

1 

E‘,’ -= const > 0, - l-,x<--~,ll<x<~ (4) 
f (xi = Fa’ = const > 0, - I, < 5 < 11 

I 

b, = const > 0, -- l<x<---,? l,<J:Gf 
A (5) = 

AZ -7 const>o, - 11< 5 < 11 

F,' = const > 0 

Setting xc (x7 t) == cept x (I), we reduce the problem of stability of the initial 
state S,, (x) to that of finding the eigenvalues of the operator H 

(H -t P)X = 0, x (-1) = x (1) = 0 (5) 

Let us consider separately the spectra of the perturbations, symmetric X’“‘(Z)= 
#“‘(-x) and antisymmetric xCO, (I) = -xta, (--x) with respect to the channelcenter 

x(1! @); - 1 <x < - I* X(1) CG -l-<x<-l~ 

XC”) W = x(U (Z), 

I 

- I, <Z < l,, X@) (2) = 

x(3) Ml lI<X<l I 

X(Z) Wr - 4 < 3 < I1 

X(3)WY lI<Z<l 

Utilizing the results of the theorems given in [S ,9], we find PO < PI < . . . 

<Pk< .... . The eigenfunction xr corresponding to the eigenvalue plc has k 
zeros in the interval ( -1, +i). Using (4), we obtain the following respective equations 
for determining the eigenvalues of the symmetric and antisymmetric perturbations: 

x1 ch xsl, ch x1 (1 - II) -+- xQ sh xsz, 

sh x1 (1 - II) = F,’ sh x1 (1 - II) ch xsZ, 

F2’ sh x1 (1 - II) sh x,1, = x1 ch x1 (1 - II) sh x3Z1 -f 
xg sh lcl (1 - II) ch x32, 
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FI’ - P Fa’ - P 
x1=-, 

4 
Xa = - 

&a ’ 
FI; s PI’ (St) 

A,=h(S,), k=1,3 

A simpler case is obtained by setting 

x1 = x&l = x, x = min (x1, xa) 

and the conclusions derived from it remain valid in the general case. The equations 
for the eigenvalues of the symmetric and antisymmetric perturbations ace ) respectively, 

x sh x (1 - 1r) ch xl, -- 
F,’ - 

(6) 
chx 

x sh x. (1 - E,) sh xl, 
E‘z’=- shx 

(7) 

Equation (6) which is convenient to use in graphical investigations, implies the 
existence of not more than one negative eigenvalue PO corresponding to the pertur- 
bation Xo nonvanishing anywhere in the interval (-1, +I) , The remaining eigen- 
values for the symmetric perturbations are all positive. Using (7 ) we can show, that 
the eigenvalues of the antisymmetric perturbations are nonnegative, and pl > 0 cor- 
responds to the perturbation XI which has a single zero in the interval{-% 4-i). The 
condition of the negativeness of p. can be written in the form 

The appearance of a negative eigenvalue is connected with the following phy - 
sical fact. A layered wave appears when the Hall parameters exceed a critical one, 
and the equation balancing the Joule heating and the energy transfer between the elec- 
trons and heavy particles has ambi~~s solution (unction F has three roots). The 
layered wave corresponds to a discontinuous passage from the stable state (S,, F,‘(S,) < 

0) to the stable state (S,, F,‘(S,) < 0). Although the wave structure degenerates 
into an infinitely thin surface when I = & Z,, it corresponds to a continuous passage 
from the point S1 to the point Sa and it therefore contains the values of temperature 
at which F,’ > 0 and the perturbations ace unstable. The condition (8 ) must hold if 
the whole system consisting of the stable phases 

si (-1 d 5 < - 4, 4 <z G $1, S,(--4 <x < 4) 

and the unstable phase s, (at 5 =--I, and z = I,) is to be unstable. 
The conclusions derived from (6 ) and (7 ) concerning the position of the spectral 

points coincide with the following qualitative investigation given in (‘71. It can be 
shown that the function dSo/dx satisfies the equation L (dSo/dz) = 0 and corresponds 
to the eigenvalue p = 0. Strictly speaking, dSofdx doesnot satisfy the boundary con- 
ditions (2), but 

dS,id4 x=k_ -+ 0 

with the increasing ~rne~i~ of the channel I We can therefore assume that one of the 
eigenfunctions Xp is proportional to d§o/dx : xp = y (q)dSo/dx. Knowing the behavior 
of the functions So (4 and dSo/dz in the interval (-2, i-1) (i.e. the number of 
the extrema of so), we can arrive at certain conclusions concerning the fact whether 
or not, p = 0 is the smallest eigenvalue . If p = 0 is not the smallest eigenvalue, 
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then there exists at least one negative eigenvalue p,, < 0. Since SO corresponding 
to the layered wave represents a discontinuous solution (&Y&X vanishes for the whole 
interval of values of the variable z), then we must estimate the smallest eigenvalue 

using the strict results following from (6 ) and (7 ) , Indeed, if the inequality (8 ) does 

not hold, then the perturbation spectrum will not contain any negative eigenvalues ir - 

respective of the fact that the initial state with the layered wave So can be referred 
(as was done in some of the problems in [3 ] ) to a solution with a single extremum in 
the channel. 

If the stationary state s, is a soliton symmetrical with respect to the channel 

center (coordinate origin), then the function S 0 will have a single extremum (dS,/dz = 
0 when 5 = 0). Consequently p1 = 0 is the eigenvalue of the antisymmetric 

perturbation X1 = Y (~1 dS,Idx, with a single zero in the interval (- 1, + 1). In this 

case there exists a symmetric eigenfunction XO which has no zeros on the above interval, 

Function x0 has a corresponding negative eigenvalue p. < 0. If the station- 

ary state represents several solitons, then several negative eigenvalues will exist. 
Obviously, the presence of a negative eigenvalue in the intial state corresponding to a 

soliton is connected with the appearance of an interval of values of z in which F,’ > 0. 
More detailed discussion based on theorems of [8,9] leads to a conclusion that the mo- 

dulus of the negative eigenvalue depends on the width of the soliton (in the case when 
a single soliton is present >. 

In the case of a one-dimensional layered wave and a soliton in motion, the 
function F has the same form as in the case of the stationary waves, therefore the re- 

sults concerning the position of the points of the spectrum of a one-dimensional pertur- 
bation remain valid for the solutions which are periodic with respect to the variable E = 

z+ Wt (with the period equal to the dimension of the channel). Since in the case 

of a single layered wave or of a single soliton not more than a single negative eigen - 

value can exist, the study of the influence of the external electrical network of the de- 
vice on the stability, becomes sufficiently simple. 

Taking into account the non-dimensional perturbations --x (r, t) exP i (KUY + 
K,z) of the stationary layered wave we find, that the neutral curve separating the 

regions of stability and instability will be a function of the parameters 9, F’, A, K = 

lo?-’ 2 t- Kz2, K, I Ku. A critical value of the Hall parameter Q+ exists, on exceeding 

which the layered wave, with a surface parallel to the electrode wall, becomes unstable. 
The author thanks A. A. Barmin and A. G. Kulikovskii for valuable comments. 
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